Differential gene expression of cotton cultivar CCRI24 during somatic embryogenesis

Regeneration is an essential step for recovery of transgenic plants following gene transfer. However, most cotton cultivars fail to respond to the current regeneration protocols for cotton. This hinders the use of gene transfer technology to improve this crop. Identification of the genes involved in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology. - 1979. - 166(2009), 12 vom: 15. Aug., Seite 1275-1283
1. Verfasser: Wu, Xiuming (VerfasserIn)
Weitere Verfasser: Li, Fuguang, Zhang, Chaojun, Liu, Chuanliang, Zhang, Xueyan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of plant physiology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't DNA, Complementary
Beschreibung
Zusammenfassung:Regeneration is an essential step for recovery of transgenic plants following gene transfer. However, most cotton cultivars fail to respond to the current regeneration protocols for cotton. This hinders the use of gene transfer technology to improve this crop. Identification of the genes involved in cotton somatic embryogenesis (SE) may provide information that will help to improve regeneration protocols. To investigate the genes expressed during cotton SE, we constructed a suppression subtractive hybridization (SSH) library using cDNA from nonembryogenic callus as driver and those from embryogenic callus as tester. From this library, 368 cDNA clones that hybridized conspicuously to the forward-subtracted and unsubtracted tester probes, but not to the reverse-subtracted or unsubtracted driver probes, were obtained and sequenced. Among the 241 putative unigenes, the functions of 152 genes (63%) could be assigned using existing databases. In addition to many previously reported SE-related genes, some new genes, such as members of ethylene pathway and auxin pathway, were discovered in our library. The expression of eight genes, including an Aux/IAA responsive gene, was analyzed by reverse-transcription-polymerase chain reaction and found to be upregulated during the SE. This is in agreement with previous studies showing that embryogenesis involves auxin signaling
Beschreibung:Date Completed 27.10.2009
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1618-1328
DOI:10.1016/j.jplph.2009.01.012