A novel connectionist system for unconstrained handwriting recognition

Recognizing lines of unconstrained handwritten text is a challenging task. The difficulty of segmenting cursive or overlapping characters, combined with the need to exploit surrounding context, has led to low recognition rates for even the best current recognizers. Most recent progress in the field...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 5 vom: 01. Mai, Seite 855-68
1. Verfasser: Graves, Alex (VerfasserIn)
Weitere Verfasser: Liwicki, Marcus, Fernández, Santiago, Bertolami, Roman, Bunke, Horst, Schmidhuber, Jürgen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM18721039X
003 DE-627
005 20231223175619.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.137  |2 doi 
028 5 2 |a pubmed24n0624.xml 
035 |a (DE-627)NLM18721039X 
035 |a (NLM)19299860 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Graves, Alex  |e verfasserin  |4 aut 
245 1 2 |a A novel connectionist system for unconstrained handwriting recognition 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.06.2009 
500 |a Date Revised 01.12.2018 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Recognizing lines of unconstrained handwritten text is a challenging task. The difficulty of segmenting cursive or overlapping characters, combined with the need to exploit surrounding context, has led to low recognition rates for even the best current recognizers. Most recent progress in the field has been made either through improved preprocessing or through advances in language modeling. Relatively little work has been done on the basic recognition algorithms. Indeed, most systems rely on the same hidden Markov models that have been used for decades in speech and handwriting recognition, despite their well-known shortcomings. This paper proposes an alternative approach based on a novel type of recurrent neural network, specifically designed for sequence labeling tasks where the data is hard to segment and contains long-range bidirectional interdependencies. In experiments on two large unconstrained handwriting databases, our approach achieves word recognition accuracies of 79.7 percent on online data and 74.1 percent on offline data, significantly outperforming a state-of-the-art HMM-based system. In addition, we demonstrate the network's robustness to lexicon size, measure the individual influence of its hidden layers, and analyze its use of context. Last, we provide an in-depth discussion of the differences between the network and HMMs, suggesting reasons for the network's superior performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liwicki, Marcus  |e verfasserin  |4 aut 
700 1 |a Fernández, Santiago  |e verfasserin  |4 aut 
700 1 |a Bertolami, Roman  |e verfasserin  |4 aut 
700 1 |a Bunke, Horst  |e verfasserin  |4 aut 
700 1 |a Schmidhuber, Jürgen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 5 vom: 01. Mai, Seite 855-68  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:5  |g day:01  |g month:05  |g pages:855-68 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.137  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 5  |b 01  |c 05  |h 855-68