Image transformations and blurring

Since cameras blur the incoming light during measurement, different images of the same surface do not contain the same information about that surface. Thus, in general, corresponding points in multiple views of a scene have different image intensities. While multiple-view geometry constrains the loc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 5 vom: 01. Mai, Seite 811-23
1. Verfasser: Domke, Justin (VerfasserIn)
Weitere Verfasser: Aloimonos, Yiannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM187210373
003 DE-627
005 20250210064634.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.133  |2 doi 
028 5 2 |a pubmed25n0624.xml 
035 |a (DE-627)NLM187210373 
035 |a (NLM)19299857 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Domke, Justin  |e verfasserin  |4 aut 
245 1 0 |a Image transformations and blurring 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.06.2009 
500 |a Date Revised 20.03.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Since cameras blur the incoming light during measurement, different images of the same surface do not contain the same information about that surface. Thus, in general, corresponding points in multiple views of a scene have different image intensities. While multiple-view geometry constrains the locations of corresponding points, it does not give relationships between the signals at corresponding locations. This paper offers an elementary treatment of these relationships. We first develop the notion of "ideal" and "real" images, corresponding to, respectively, the raw incoming light and the measured signal. This framework separates the filtering and geometric aspects of imaging. We then consider how to synthesize one view of a surface from another; if the transformation between the two views is affine, it emerges that this is possible if and only if the singular values of the affine matrix are positive. Next, we consider how to combine the information in several views of a surface into a single output image. By developing a new tool called "frequency segmentation," we show how this can be done despite not knowing the blurring kernel 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Aloimonos, Yiannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 31(2009), 5 vom: 01. Mai, Seite 811-23  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:5  |g day:01  |g month:05  |g pages:811-23 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.133  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 5  |b 01  |c 05  |h 811-23