Evidence for initiation of thermal reactions of alkenes with hydrogen-terminated silicon by surface-catalyzed thermal decomposition of the reactant

New insights into the mechanism of thermal reactions of alkenes with hydrogen terminated silicon are presented. Scanning tunneling microscopy (STM) imaging at the early stages of the reaction of 1-decene with H/Si(111) at 150 degrees C confirm this reaction occurs via a propagating radical chain mec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 25(2009), 10 vom: 19. Mai, Seite 5626-30
1. Verfasser: Mischki, Trevor K (VerfasserIn)
Weitere Verfasser: Lopinski, Gregory P, Wayner, Danial D M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:New insights into the mechanism of thermal reactions of alkenes with hydrogen terminated silicon are presented. Scanning tunneling microscopy (STM) imaging at the early stages of the reaction of 1-decene with H/Si(111) at 150 degrees C confirm this reaction occurs via a propagating radical chain mechanism. In addition, evidence is presented for an initiation mechanism involving degradation of hydrocarbon molecules catalyzed by the silanol surface of Schlenk tubes commonly used in carrying out these reactions. Hydrogen-terminated silicon surfaces are found to be unstable in the "inert" solvent dodecane when heated at 150 degrees C in a Pyrex Schlenk tube. By contrast, the surfaces were significantly more stable at the same temperature when reactions were carried out in Teflon (polytetrafluoroethylene or PTFE). The thermal reaction of decene with H/Si(111) was found to proceed more rapidly in Pyrex than in PTFE, consistent with an impurity-based initiation mechanism
Beschreibung:Date Completed 23.07.2009
Date Revised 12.05.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la804210d