Computing Teichmüller shape space

Shape indexing, classification, and retrieval are fundamental problems in computer graphics. This work introduces a novel method for surface indexing and classification based on Teichmuller theory. The Teichmuller space for surfaces with the same topology is a finite dimensional manifold, where each...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 15(2009), 3 vom: 31. Mai, Seite 504-17
1. Verfasser: Jin, Miao (VerfasserIn)
Weitere Verfasser: Zeng, Wei, Luo, Feng, Gu, Xianfeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM187048584
003 DE-627
005 20231223175317.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2008.103  |2 doi 
028 5 2 |a pubmed24n0624.xml 
035 |a (DE-627)NLM187048584 
035 |a (NLM)19282555 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jin, Miao  |e verfasserin  |4 aut 
245 1 0 |a Computing Teichmüller shape space 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.05.2009 
500 |a Date Revised 13.03.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Shape indexing, classification, and retrieval are fundamental problems in computer graphics. This work introduces a novel method for surface indexing and classification based on Teichmuller theory. The Teichmuller space for surfaces with the same topology is a finite dimensional manifold, where each point represents a conformal equivalence class, a curve represents a deformation process from one class to the other. We apply Teichmuller space coordinates as shape descriptors, which are succinct, discriminating and intrinsic; invariant under the rigid motions and scalings, insensitive to resolutions. Furthermore, the method has solid theoretic foundation, and the computation of Teichmuller coordinates is practical, stable and efficient. This work focuses on the surfaces with negative Euler numbers, which have a unique conformal Riemannian metric with -1 Gaussian curvature. The coordinates which we will compute are the lengths of a special set of geodesics under this special metric. The metric can be obtained by the curvature flow algorithm, the geodesics can be calculated using algebraic topological method. We tested our method extensively for indexing and comparison of about one hundred of surfaces with various topologies, geometries and resolutions. The experimental results show the efficacy and efficiency of the length coordinate of the Teichmuller space 
650 4 |a Journal Article 
700 1 |a Zeng, Wei  |e verfasserin  |4 aut 
700 1 |a Luo, Feng  |e verfasserin  |4 aut 
700 1 |a Gu, Xianfeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 15(2009), 3 vom: 31. Mai, Seite 504-17  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:15  |g year:2009  |g number:3  |g day:31  |g month:05  |g pages:504-17 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2008.103  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2009  |e 3  |b 31  |c 05  |h 504-17