|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM186967365 |
003 |
DE-627 |
005 |
20231223175128.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2009.056
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0623.xml
|
035 |
|
|
|a (DE-627)NLM186967365
|
035 |
|
|
|a (NLM)19273900
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a So, M H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Decomposition of 1,4-dioxane by photo-Fenton oxidation coupled with activated sludge in a polyester manufacturing process
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.05.2009
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The cyclic ether 1,4-dioxane is a synthetic industrial chemical that is used as a solvent in producing paints and lacquers. The EPA and the International Agency for Research on Cancer(IARC) classified 1,4-dioxane as a GROUP B2(probable human) carcinogen. 1,4-dioxane is also produced as a by-product during the manufacture of polyester. In this research, a polyester manufacturing company (i.e. K Co.) in Gumi, Korea was investigated regarding the release of high concentrations of 1,4-dioxane (about 600 mg/L) and whether treatment prior to release should occur to meet with the level of the regulation standard (e.g., 5 mg/L in 2010). A 10 ton/day pilot-scale treatment system using photo-Fenton oxidation was able to remove approximately 90% of 1,4-dioxane under the conditions that concentrations of 2800 ppm H(2)O(2) and 1,400 ppm FeSO(4) were maintained along with 10 UV-C lamps (240 microW/cm(2)) installed and operated continuously during aeration. However, the effluent concentration of 1,4-dioxane was still high at about 60 mg/L where TOC concentration in the effluent had been moreover increased due to decomposed products such as aldehydes and organic acids. Thus, further investigation is needed to see whether the bench scale (reactor volume, 8.9 L) of activated sludge could facilitate the decomposition of 1,4-dioxane and their by-products (i.e., TOC). As a result, 1,4-dioxane in the effluent has been decreased as low as 0.5 mg/L. The optimal conditions for the activated sludge process that were obtained are as follows: DO, 3-3.5 mg/L; HRT, 24 h; SRT 15 d; MLSS, 3,000 mg/L. Consequently, photo-Fenton oxidation coupled with activated sludge can make it possible to efficiently decompose 1,4-dioxane to keep up with that of the regulation standard
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Dioxanes
|2 NLM
|
650 |
|
7 |
|a Fenton's reagent
|2 NLM
|
650 |
|
7 |
|a Industrial Waste
|2 NLM
|
650 |
|
7 |
|a Polyesters
|2 NLM
|
650 |
|
7 |
|a Sewage
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Hydrogen Peroxide
|2 NLM
|
650 |
|
7 |
|a BBX060AN9V
|2 NLM
|
650 |
|
7 |
|a Iron
|2 NLM
|
650 |
|
7 |
|a E1UOL152H7
|2 NLM
|
650 |
|
7 |
|a 1,4-dioxane
|2 NLM
|
650 |
|
7 |
|a J8A3S10O7S
|2 NLM
|
700 |
1 |
|
|a Han, J S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Han, T H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Seo, J W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, C G
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 59(2009), 5 vom: 24., Seite 1003-9
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2009
|g number:5
|g day:24
|g pages:1003-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2009.056
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2009
|e 5
|b 24
|h 1003-9
|