|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM186967330 |
003 |
DE-627 |
005 |
20250210060907.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.2166/wst.2009.077
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0623.xml
|
035 |
|
|
|a (DE-627)NLM186967330
|
035 |
|
|
|a (NLM)19273897
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhu, Shi-Kun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Performance of tetramethoxyphenyl porphyrin cobalt(II) (CoTMPP) based stainless steel cathode in the electricigenic permeable reactive barrier for groundwater organic contamination remediation
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 11.05.2009
|
500 |
|
|
|a Date Revised 21.11.2013
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a An electricigenic permeable reactive barrier (EPRB) technology was brought forward for remediation of organic-contaminated groundwater, with a benefit that it overcame the limitations of electron acceptor addition in other groundwater remediation methods. To investigate performances of constructions and materials used in EPRB system, several kinds of reactors were designed and prepared in laboratory. Stainless steel wires, a kind of nontoxic, inexpensive and conductive material, were used as basic material of electrode. In order to improve cathodic oxygen reduction capability, a cathode based on tetramethoxyphenyl porphyrin cobalt (II) (CoTMPP) was prepared and studied in this paper. Results showed that a high catalytic activity for oxygen reduction was exhibited by the CoTMPP based cathode, with an electricity generation 3 times as high as that of the naked stainless steel cathode. Some evidence indicated that by loading on the surface of stainless steel wires and heat-treated under anaerobic conditions, epoxy resin, with its curing agents, might have got a catalytic capability for oxygen reduction
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Metalloporphyrins
|2 NLM
|
650 |
|
7 |
|a Water Pollutants, Chemical
|2 NLM
|
650 |
|
7 |
|a Stainless Steel
|2 NLM
|
650 |
|
7 |
|a 12597-68-1
|2 NLM
|
650 |
|
7 |
|a Cobalt
|2 NLM
|
650 |
|
7 |
|a 3G0H8C9362
|2 NLM
|
700 |
1 |
|
|a Fan, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Jie-Wei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Yuan-Yuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 59(2009), 5 vom: 24., Seite 979-85
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:59
|g year:2009
|g number:5
|g day:24
|g pages:979-85
|
856 |
4 |
0 |
|u http://dx.doi.org/10.2166/wst.2009.077
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 59
|j 2009
|e 5
|b 24
|h 979-85
|