Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data

2009 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 14 vom: 15. Nov., Seite 2297-304
1. Verfasser: Shyu, Conrad (VerfasserIn)
Weitere Verfasser: Ytreberg, F Marty
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM186897723
003 DE-627
005 20250210055853.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21231  |2 doi 
028 5 2 |a pubmed25n0623.xml 
035 |a (DE-627)NLM186897723 
035 |a (NLM)19266482 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shyu, Conrad  |e verfasserin  |4 aut 
245 1 0 |a Reducing the bias and uncertainty of free energy estimates by using regression to fit thermodynamic integration data 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.01.2010 
500 |a Date Revised 31.08.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a 2009 Wiley Periodicals, Inc. 
520 |a This report presents the application of polynomial regression for estimating free energy differences using thermodynamic integration data, i.e., slope of free energy with respect to the switching variable lambda. We employ linear regression to construct a polynomial that optimally fits the thermodynamic integration data, and thus reduces the bias and uncertainty of the resulting free energy estimate. Two test systems with analytical solutions were used to verify the accuracy and precision of the approach. Our results suggest that use of regression with high degree of polynomials provides the most accurate free energy difference estimates, but often with slightly larger uncertainty, compared to commonly used quadrature techniques. High degree polynomials possess the flexibility to closely fit the thermodynamic integration data but are often sensitive to small changes in the data points. Thus, we also used Chebyshev nodes to guide in the selection of nonequidistant lambda values for use in thermodynamic integration. We conclude that polynomial regression with nonequidistant lambda values delivers the most accurate and precise free energy estimates for thermodynamic integration data for the systems considered here. Software and documentation is available at http://www.phys.uidaho.edu/ytreberg/software 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ytreberg, F Marty  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 14 vom: 15. Nov., Seite 2297-304  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:14  |g day:15  |g month:11  |g pages:2297-304 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21231  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 14  |b 15  |c 11  |h 2297-304