Evaluating the robustness of dual apodization with cross-correlation

We have recently presented a new method to suppress side lobes and clutter in ultrasound imaging called dual apodization with cross-correlation (DAX). However, due to the random nature of speckle, artifactual black spots may arise with DAX-processed images. In this paper, we present one possible sol...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 56(2009), 2 vom: 01. Feb., Seite 291-303
Auteur principal: Seo, Chi Hyung (Auteur)
Autres auteurs: Yen, Jesse T
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Sujets:Journal Article Research Support, Non-U.S. Gov't
Description
Résumé:We have recently presented a new method to suppress side lobes and clutter in ultrasound imaging called dual apodization with cross-correlation (DAX). However, due to the random nature of speckle, artifactual black spots may arise with DAX-processed images. In this paper, we present one possible solution, called dynamic DAX, to reduce these black spots. We also evaluate the robustness of dynamic DAX in the presence of phase aberration and noise. Simulation results using a 5 MHz, 128-element linear array are presented using dynamic DAX with aberrator strengths ranging from 25 ns root-mean-square (RMS) to 45 ns RMS and correlation lengths of 3 mm and 5 mm. When simulating a 3 mm diameter anechoic cyst, at least 100% improvement in the contrast-to-noise ratio (CNR) compared with standard beamforming is seen using dynamic DAX, except in the most severe case. Layers of pig skin, fat, and muscle were used as experimental aberrators. Simulation and experimental results are also presented using dynamic DAX in the presence of noise. With a system signal-to-noise ratio (SNR) of at least 15 dB, we have a CNR improvement of more than 100% compared with standard beamforming. This work shows that dynamic DAX is able to improve the contrast-to-noise ratio reliably in the presence of phase aberration and noise
Description:Date Completed 17.08.2009
Date Revised 12.03.2024
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2009.1038