Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances

Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Qua...

Description complète

Détails bibliographiques
Publié dans:The New phytologist. - 1979. - 182(2009), 2 vom: 01., Seite 470-482
Auteur principal: Persson, Mattias (Auteur)
Autres auteurs: Staal, Jens, Oide, Shinichi, Dixelius, Christina
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:The New phytologist
Sujets:Journal Article Research Support, Non-U.S. Gov't Arabidopsis Proteins Cyclopentanes Ethylenes Indoles Oxylipins Plant Growth Regulators Thiazoles Virulence Factors plus... camalexin jasmonic acid 6RI5N05OWW Lignin 9005-53-2 Cytochrome P-450 Enzyme System 9035-51-2 ethylene 91GW059KN7 PAD3 protein, Arabidopsis EC 1.14.- Salicylic Acid O414PZ4LPZ
Description
Résumé:Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Quantitative assessment of fungal colonization in the host was carried out using quantitative polymerase chain reaction (qPCR) and GUS expression analyses, to further characterize RLM1 resistance and the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in disease development. Additional assessments of A. thaliana mutants were performed to expand our understanding of this pathosystem. Resistance responses such as lignification and the formation of vascular plugs were found to occur in an RLM1-dependent manner, in contrast to the RLM1-independent increase in reactive oxygen species at the stomata and hydathodes. Analyses of mutants defective in hormone signaling in the camalexin-free rlm1(Ler)pad3 background revealed a significant influence of JA and ET on symptom development and pathogen colonization. The overall results indicate that the defense responses of primary importance induced by RLM1 are all associated with physical barriers, and that responses of secondary importance involve complex cross-talk among SA, JA and ET. Our observations further suggest that ET positively affects fungal colonization
Description:Date Completed 17.07.2009
Date Revised 16.04.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.2009.02763.x