|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM186466560 |
003 |
DE-627 |
005 |
20240322232553.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2008.02755.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1340.xml
|
035 |
|
|
|a (DE-627)NLM186466560
|
035 |
|
|
|a (NLM)19220762
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bahn, Michael
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale?
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 17.07.2009
|
500 |
|
|
|a Date Revised 22.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Soil respiration is the largest flux of carbon (C) from terrestrial ecosystems to the atmosphere. Here, we tested the hypothesis that photosynthesis affects the diurnal pattern of grassland soil-respired CO(2) and its C isotope composition (delta(13)C(SR)). A combined shading and pulse-labelling experiment was carried out in a mountain grassland. delta(13)C(SR) was monitored at a high time resolution with a tunable diode laser absorption spectrometer. In unlabelled plots a diurnal pattern of delta(13)C(SR) was observed, which was not explained by soil temperature, moisture or flux rates and contained a component that was also independent of assimilate supply. In labelled plots delta(13)C(SR) reflected a rapid transfer and respiratory use of freshly plant-assimilated C and a diurnal shift in the predominant respiratory C source from recent (i.e. at least 1 d old) to fresh (i.e. photoassimilates produced on the same day). We conclude that in grasslands the plant-derived substrates used for soil respiratory processes vary during the day, and that photosynthesis provides an important and immediate C source. These findings indicate a tight coupling in the plant-soil system and the importance of plant metabolism for soil CO(2) fluxes
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Carbon Isotopes
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
700 |
1 |
|
|a Schmitt, Michael
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Siegwolf, Rolf
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Richter, Andreas
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Brüggemann, Nicolas
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 182(2009), 2 vom: 01., Seite 451-460
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:182
|g year:2009
|g number:2
|g day:01
|g pages:451-460
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2008.02755.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 182
|j 2009
|e 2
|b 01
|h 451-460
|