Superoleophobic cotton textiles

Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 25(2009), 4 vom: 17. Feb., Seite 2456-60
1. Verfasser: Leng, Boxun (VerfasserIn)
Weitere Verfasser: Shao, Zhengzhong, de With, Gijsbertus, Ming, Weihua
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Alkenes Water 059QF0KO0R
Beschreibung
Zusammenfassung:Common cotton textiles are hydrophilic and oleophilic in nature. Superhydrophobic cotton textiles have the potential to be used as self-cleaning fabrics, but they typically are not super oil-repellent. Poor oil repellency may easily compromise the self-cleaning property of these fabrics. Here, we report on the preparation of superoleophobic cotton textiles based on a multilength-scale structure, as demonstrated by a high hexadecane contact angle (153 degrees for 5 microL droplets) and low roll-off angle (9 degrees for 20 microL droplets). The multilength-scale roughness was based on the woven structure, with additional two layers of silica particles (microparticles and nanoparticles, respectively) covalently bonded to the fiber. Superoleophobicity was successfully obtained by incorporating perfluoroalkyl groups onto the surface of the modified cotton. It proved to be essential to add the nanoparticle layer in achieving superoleophobicity, especially in terms of low roll-off angles for hexadecane
Beschreibung:Date Completed 31.03.2009
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la8031144