A kernel-based method to determine optimal sampling times for the simultaneous estimation of the parameters of rival mathematical models

Copyright 2009 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 13 vom: 15. Okt., Seite 2064-77
1. Verfasser: Donckels, Brecht M R (VerfasserIn)
Weitere Verfasser: De Pauw, Dirk J W, Vanrolleghem, Peter A, De Baets, Bernard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Enzymes Glucokinase EC 2.7.1.2
LEADER 01000naa a22002652 4500
001 NLM185952445
003 DE-627
005 20231223173406.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21171  |2 doi 
028 5 2 |a pubmed24n0620.xml 
035 |a (DE-627)NLM185952445 
035 |a (NLM)19165773 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Donckels, Brecht M R  |e verfasserin  |4 aut 
245 1 2 |a A kernel-based method to determine optimal sampling times for the simultaneous estimation of the parameters of rival mathematical models 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.10.2009 
500 |a Date Revised 03.08.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2009 Wiley Periodicals, Inc. 
520 |a When several models are proposed for one and the same process, experimental design techniques are available to design optimal discriminatory experiments. However, because the experimental design techniques are model-based, it is important that the required model predictions are not too uncertain. This uncertainty is determined by the quality of the already available data, since low-quality data will result in poorly estimated parameters, which on their turn result in uncertain model predictions. Therefore, model discrimination may become more efficient and effective if this uncertainty is reduced first. This can be achieved by performing dedicated experiments, designed to increase the accuracy of the parameter estimates. However, performing such an additional experiment for each rival model may undermine the overall goal of optimal experimental design, which is to minimize the experimental effort. In this article, a kernel-based method is presented to determine optimal sampling times to simultaneously estimate the parameters of rival models in a single experiment. The method is applied in a case study where nine rival models are defined to describe the kinetics of an enzymatic reaction (glucokinase). The results clearly show that the presented method performs well, and that a compromise experiment is found which is sufficiently informative to improve the overall accuracy of the parameters of all rival models, thus allowing subsequent design of an optimal discriminatory experiment 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Enzymes  |2 NLM 
650 7 |a Glucokinase  |2 NLM 
650 7 |a EC 2.7.1.2  |2 NLM 
700 1 |a De Pauw, Dirk J W  |e verfasserin  |4 aut 
700 1 |a Vanrolleghem, Peter A  |e verfasserin  |4 aut 
700 1 |a De Baets, Bernard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 13 vom: 15. Okt., Seite 2064-77  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:13  |g day:15  |g month:10  |g pages:2064-77 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21171  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 13  |b 15  |c 10  |h 2064-77