Synthesis of hollow-structured nano- and microspheres from pectin in a nanodroplet emulsion

Hollow-structured nano- and microspheres with diameters ranging from 24 microm to 160 nm were successfully produced from chemically modified pectin (Ma-Pec) through a two-step synthesis. In a first step, the Pec was modified with glycidyl methacrylate (GMA) in a heterogeneous phase system, indeed co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 25(2009), 4 vom: 17. Feb., Seite 2473-8
1. Verfasser: Reis, Adriano V (VerfasserIn)
Weitere Verfasser: Guilherme, Marcos R, Paulino, Alexandre T, Muniz, Edvani C, Mattoso, Luiz H C, Tambourgi, Elias B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Emulsions Pectins 89NA02M4RX
Beschreibung
Zusammenfassung:Hollow-structured nano- and microspheres with diameters ranging from 24 microm to 160 nm were successfully produced from chemically modified pectin (Ma-Pec) through a two-step synthesis. In a first step, the Pec was modified with glycidyl methacrylate (GMA) in a heterogeneous phase system, indeed consisting of water-soluble Pec and water-insoluble GMA, via an interfacial reaction at the interface of the GMA-water phase system after 12 h under continuous stirring of 1000 rpm at 60 degrees C. In a second step, the spheres were prepared in a water-in-benzyl alcohol nanodroplet emulsion at 12000 rpm under a bubbling stream of nitrogen in the presence of sodium persulfate, as initiator, and TEMED, as catalytic agent. FT-IR spectra revealed that the vinyl groups (CC) coming from the GMA were attached onto backbone of the polysaccharide. 13C-CP/MAS NMR spectra demonstrated that the spheres were formed via carbon-carbon pi-bonds on Ma-Pec in the water phase, for the duration of the dispersion stage. The dark center (an empty core) and edge of the hollow spheres could be easily identified by SEM micrographs. This type of polymer structure represents a class of unique material with particular importance in terms of state-of the-art applications in both nano- and microencapsulation of drugs, for example, protection shields of biologically active agents
Beschreibung:Date Completed 31.03.2009
Date Revised 01.12.2018
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la803313j