Classification-based probabilistic modeling of texture transition for fast line search tracking and delineation

We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners which operate on image intensity discriminative features which are defined on small patches and fast to compute. A database which is designed to simulate digitiz...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 3 vom: 27. März, Seite 570-6
1. Verfasser: Shahrokni, Ali (VerfasserIn)
Weitere Verfasser: Drummond, Tom, Fleuret, François, Fua, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM185784003
003 DE-627
005 20231223173113.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.236  |2 doi 
028 5 2 |a pubmed24n0619.xml 
035 |a (DE-627)NLM185784003 
035 |a (NLM)19147883 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shahrokni, Ali  |e verfasserin  |4 aut 
245 1 0 |a Classification-based probabilistic modeling of texture transition for fast line search tracking and delineation 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.04.2009 
500 |a Date Revised 16.01.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce a classification-based approach to finding occluding texture boundaries. The classifier is composed of a set of weak learners which operate on image intensity discriminative features which are defined on small patches and fast to compute. A database which is designed to simulate digitized occluding contours of textured objects in natural images is used to train the weak learners. The trained classifier score is then used to obtain a probabilistic model for the presence of texture transitions which can readily be used for line search texture boundary detection in the direction normal to an initial boundary estimate. This method is fast and therefore suitable for real-time and interactive applications. It works as a robust estimator which requires a ribbon like search region and can handle complex texture structures without requiring a large number of observations. We demonstrate results both in the context of interactive 2-D delineation and fast 3-D tracking and compare its performance with other existing methods for line search boundary detection 
650 4 |a Journal Article 
700 1 |a Drummond, Tom  |e verfasserin  |4 aut 
700 1 |a Fleuret, François  |e verfasserin  |4 aut 
700 1 |a Fua, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 3 vom: 27. März, Seite 570-6  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:3  |g day:27  |g month:03  |g pages:570-6 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 3  |b 27  |c 03  |h 570-6