Response of polyelectrolyte layers to the SiO2 substrate charging as probed by XPS

A single layer of the cationic polyelectrolyte poly(allyamine) hydrochloride (PAH) deposited, using the layer-by-layer technique, on a silicon substrate containing 5 nm oxide layer is investigated by XPS while applying an external potential bias to the sample to control and manipulate the charge bui...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 3 vom: 03. Feb., Seite 1757-60
1. Verfasser: Conger, Can Pinar (VerfasserIn)
Weitere Verfasser: Suzer, Sefik
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Electrolytes Molecular Probes Polymers Silicon Dioxide 7631-86-9
Beschreibung
Zusammenfassung:A single layer of the cationic polyelectrolyte poly(allyamine) hydrochloride (PAH) deposited, using the layer-by-layer technique, on a silicon substrate containing 5 nm oxide layer is investigated by XPS while applying an external potential bias to the sample to control and manipulate the charge built-up on the oxide layer. Under application of a -10 V bias, the oxide layer is positively charged due to photoemission process, evidenced by the measured Si2p binding energy of 104.4 eV. Application of a +10 V bias attracts the low energy neutralizing electrons, stemming from a hot filament, and leads to a negatively charged oxide layer, also evidenced by the measured Si2p binding energy of 102.9 eV. The single polyelectrolyte overlayer also responds to this polarity change of the oxide layer underneath by displaying a somewhat larger shifts both in the C1s and N1s peaks. In addition to the shifts in the positions, the N1s peaks undergo a significant intensity depletion, mostly on the positively charged -N+ component. We interpret this intensity depletion to be the result of reorientation of some of the dangling positively charged groups by moving toward the negatively charged oxide underlayer. To our knowledge this is the first time that a chemically specific response to an electrical stimuli is reported using XPS. A bilayer LbL film consisting of PAH and PSS, exhibits even a larger charging shift, but this time no intensity alteration is observed, most probably due to locking of the -N+ groups by the -SO3+ counterions of the second layer
Beschreibung:Date Completed 05.03.2009
Date Revised 27.01.2009
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la803305w