Semisupervised learning of hidden Markov models via a homotopy method
Hidden Markov model (HMM) classifier design is considered for the analysis of sequential data, incorporating both labeled and unlabeled data for training; the balance between the use of labeled and unlabeled data is controlled by an allocation parameter \lambda \in [0, 1), where \lambda = 0 correspo...
Publié dans: | IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 2 vom: 13. Feb., Seite 275-87 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2009
|
Accès à la collection: | IEEE transactions on pattern analysis and machine intelligence |
Sujets: | Journal Article |
Accès en ligne |
Volltext |