Semisupervised learning of hidden Markov models via a homotopy method

Hidden Markov model (HMM) classifier design is considered for the analysis of sequential data, incorporating both labeled and unlabeled data for training; the balance between the use of labeled and unlabeled data is controlled by an allocation parameter \lambda \in [0, 1), where \lambda = 0 correspo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 31(2009), 2 vom: 13. Feb., Seite 275-87
1. Verfasser: Ji, Shihao (VerfasserIn)
Weitere Verfasser: Watson, Layne T, Carin, Lawrence
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article