Layer-by-layer deposition of polyelectrolyte-polyelectrolyte complexes for multilayer film fabrication

Positively charged poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complexes (noted as PAH-PAA) with a molar excess of PAH were layer-by-layer (LbL) assembled with polyanion poly(sodium 4-styrenesulfonate) (PSS) to produce multilayer films. The film structure and deposition behavio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 25(2009), 2 vom: 20. Jan., Seite 1004-10
1. Verfasser: Guo, Yongmei (VerfasserIn)
Weitere Verfasser: Geng, Wei, Sun, Junqi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Positively charged poly(allylamine hydrochloride) (PAH) and poly(acrylic acid) (PAA) complexes (noted as PAH-PAA) with a molar excess of PAH were layer-by-layer (LbL) assembled with polyanion poly(sodium 4-styrenesulfonate) (PSS) to produce multilayer films. The film structure and deposition behavior of the PAH-PAA/PSS films were influenced by the structure of PAH-PAA complexes in solution. For the PAH-PAA complexes with a low ratio of PAA to PAH the PAH-PAA complexes have low-level cross-linking and are flexible. The resultant PAH-PAA/PSS films have a thin film thickness and smooth surface and exhibit a nonlinear deposition behavior where the amount of PAH-PAA complexes and PSS deposited in each deposition cycle are larger than in its previous cycle. The PAH-PAA complexes with a high ratio of PAA to PAH have high-level cross-linking and are rigid. The PAH-PAA/PSS films constructed from the rigid PAH-PAA complexes have a large film thickness and rough surface and exhibit a linear deposition behavior. Deposition of the PAH-PAA/PSS films was well characterized by quartz crystal microbalance, atomic force microscopy, and scanning electron microscopy. The thermally cross-linked PAH-PAA/PSS films can be released from substrate to form stable free-standing films by an ion-triggered exfoliation method. Meanwhile, positively charged PAH-PAA complexes can be LbL assembled with negatively charged PAH-PAA complexes with a molar excess of PAA to produce multilayer films. Use of polyelectrolyte-polyelectrolyte complexes as building blocks for LbL fabrication provides a facile way to tailor the structures of the resultant films by simply changing the structure of the complexes in solution
Beschreibung:Date Completed 27.02.2009
Date Revised 13.01.2009
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la803479a