Boosted online learning for face recognition

Face recognition applications commonly suffer from three main drawbacks: a reduced training set, information lying in high-dimensional subspaces, and the need to incorporate new people to recognize. In the recent literature, the extension of a face classifier in order to include new people in the mo...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 39(2009), 2 vom: 15. Apr., Seite 530-8
Auteur principal: Masip, David (Auteur)
Autres auteurs: Lapedriza, Agata, Vitrià, Jordi
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM185296289
003 DE-627
005 20250210011232.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2008.2007497  |2 doi 
028 5 2 |a pubmed25n0618.xml 
035 |a (DE-627)NLM185296289 
035 |a (NLM)19095543 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Masip, David  |e verfasserin  |4 aut 
245 1 0 |a Boosted online learning for face recognition 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.05.2009 
500 |a Date Revised 23.03.2009 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Face recognition applications commonly suffer from three main drawbacks: a reduced training set, information lying in high-dimensional subspaces, and the need to incorporate new people to recognize. In the recent literature, the extension of a face classifier in order to include new people in the model has been solved using online feature extraction techniques. The most successful approaches of those are the extensions of the principal component analysis or the linear discriminant analysis. In the current paper, a new online boosting algorithm is introduced: a face recognition method that extends a boosting-based classifier by adding new classes while avoiding the need of retraining the classifier each time a new person joins the system. The classifier is learned using the multitask learning principle where multiple verification tasks are trained together sharing the same feature space. The new classes are added taking advantage of the structure learned previously, being the addition of new classes not computationally demanding. The present proposal has been (experimentally) validated with two different facial data sets by comparing our approach with the current state-of-the-art techniques. The results show that the proposed online boosting algorithm fares better in terms of final accuracy. In addition, the global performance does not decrease drastically even when the number of classes of the base problem is multiplied by eight 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Lapedriza, Agata  |e verfasserin  |4 aut 
700 1 |a Vitrià, Jordi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 39(2009), 2 vom: 15. Apr., Seite 530-8  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:39  |g year:2009  |g number:2  |g day:15  |g month:04  |g pages:530-8 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2008.2007497  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2009  |e 2  |b 15  |c 04  |h 530-8