Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations

(c) 2008 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 9 vom: 15. Juli, Seite 1490-8
1. Verfasser: Nilsson, Lennart (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Proteins Water 059QF0KO0R
LEADER 01000naa a22002652 4500
001 NLM185083994
003 DE-627
005 20231223171756.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21169  |2 doi 
028 5 2 |a pubmed24n0617.xml 
035 |a (DE-627)NLM185083994 
035 |a (NLM)19072764 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nilsson, Lennart  |e verfasserin  |4 aut 
245 1 0 |a Efficient table lookup without inverse square roots for calculation of pair wise atomic interactions in classical simulations 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.07.2009 
500 |a Date Revised 21.05.2021 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2008 Wiley Periodicals, Inc. 
520 |a A major bottleneck in classical atomistic simulations of biomolecular systems is the calculation of the pair wise nonbonded (Coulomb, van der Waals) interactions. This remains an issue even when methods are used (e.g., lattice summation or spherical cutoffs) in which the number of interactions is reduced from O(N(2)) to O(NlogN) or O(N). The interaction forces and energies can either be calculated directly each time they are needed or retrieved using precomputed values in a lookup table; the choice between direct calculation and table lookup methods depends on the characteristics of the system studied (total number of particles and the number of particle kinds) as well as the hardware used (CPU speed, size and speed of cache, and main memory). A recently developed lookup table code, implemented in portable and easily maintained FORTRAN 95 in the CHARMM program (www.charmm.org), achieves a 1.5- to 2-fold speedup compared with standard calculations using highly optimized FORTRAN code in real molecular dynamics simulations for a wide range of molecular system sizes. No approximations other than the finite resolution of the tables are introduced, and linear interpolation in a table with the relatively modest density of 100 points/A(2) yields the same accuracy as the standard double precision calculations. For proteins in explicit water a less dense table (10 points/A(2)) is 10-20% faster than using the larger table, and only slightly less accurate. The lookup table is even faster than hand coded assembler routines in most cases, mainly due to a significantly smaller operation count inside the inner loop 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 9 vom: 15. Juli, Seite 1490-8  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:9  |g day:15  |g month:07  |g pages:1490-8 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21169  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 9  |b 15  |c 07  |h 1490-8