|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM185079997 |
003 |
DE-627 |
005 |
20231223171753.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la803227s
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0617.xml
|
035 |
|
|
|a (DE-627)NLM185079997
|
035 |
|
|
|a (NLM)19072315
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Fenz, Susanne F
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Diffusion and intermembrane distance
|b case study of avidin and E-cadherin mediated adhesion
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.02.2009
|
500 |
|
|
|a Date Revised 13.01.2009
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We present a biomimetic model system for cell-cell adhesion consisting of a giant unilamellar vesicle (GUV) adhering via specific ligand-receptor interactions to a supported lipid bilayer (SLB). The modification of in-plane diffusion of tracer lipids and receptors in the SLB membrane due to adhesion to the GUV is reported. Adhesion was mediated by either biotin-neutravidin (an avidin analogue) or the extracellular domains of the cell adhesion molecule E-cadherin (Ecad). In the strong interaction (biotin-avidin) case, binding of soluble receptors to the SLB alone led to reduced diffusion of tracer lipids. From theoretical considerations, this could be attributed partially to introduction of obstacles and partially to viscous effects. Further specific binding of a GUV membrane caused additional slowing down of tracers (up to 15%) and immobilization of receptors, and led to accumulation of receptors in the adhesion zone until full coverage was achieved. The intermembrane distance was measured to be 7 nm from microinterferometry (RICM). We show that a crowding effect due to the accumulated receptors alone is not sufficient to account for the slowing downan additional friction from the membrane also plays a role. In the weak binding case (Ecad), the intermembrane distance was about 50 nm, corresponding to partial overlap of the Ecad domains. No significant change in diffusion of tracer lipids was observed upon either protein binding or subsequent vesicle binding. The former was probably due to very small effective size of the obstacles introduced into the bilayer by Ecad binding, whereas the latter was due to the fact that, with such high intermembrane distance, the resulting friction is negligible. We conclude that the effect of intermembrane adhesion on diffusion depends strongly on the choice of the receptors
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a Cadherins
|2 NLM
|
650 |
|
7 |
|a Lipid Bilayers
|2 NLM
|
650 |
|
7 |
|a neutravidin
|2 NLM
|
650 |
|
7 |
|a Avidin
|2 NLM
|
650 |
|
7 |
|a 1405-69-2
|2 NLM
|
700 |
1 |
|
|a Merkel, Rudolf
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sengupta, Kheya
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 25(2009), 2 vom: 20. Jan., Seite 1074-85
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:25
|g year:2009
|g number:2
|g day:20
|g month:01
|g pages:1074-85
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la803227s
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 25
|j 2009
|e 2
|b 20
|c 01
|h 1074-85
|