Learning atomic human actions using variable-length Markov models

Visual analysis of human behavior has generated considerable interest in the field of computer vision because of its wide spectrum of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a basic and complete movement. Learning and recognizing atomic hu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1996. - 39(2009), 1 vom: 07. Feb., Seite 268-80
1. Verfasser: Liang, Yu-Ming (VerfasserIn)
Weitere Verfasser: Shih, Sheng-Wen, Shih, Arthur Chun-Chieh, Liao, Hong-Yuan Mark, Lin, Cheng-Chung
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM185041957
003 DE-627
005 20250210002413.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TSMCB.2008.2005643  |2 doi 
028 5 2 |a pubmed25n0617.xml 
035 |a (DE-627)NLM185041957 
035 |a (NLM)19068434 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Yu-Ming  |e verfasserin  |4 aut 
245 1 0 |a Learning atomic human actions using variable-length Markov models 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 10.08.2009 
500 |a Date Revised 20.01.2009 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Visual analysis of human behavior has generated considerable interest in the field of computer vision because of its wide spectrum of potential applications. Human behavior can be segmented into atomic actions, each of which indicates a basic and complete movement. Learning and recognizing atomic human actions are essential to human behavior analysis. In this paper, we propose a framework for handling this task using variable-length Markov models (VLMMs). The framework is comprised of the following two modules: a posture labeling module and a VLMM atomic action learning and recognition module. First, a posture template selection algorithm, based on a modified shape context matching technique, is developed. The selected posture templates form a codebook that is used to convert input posture sequences into discrete symbol sequences for subsequent processing. Then, the VLMM technique is applied to learn the training symbol sequences of atomic actions. Finally, the constructed VLMMs are transformed into hidden Markov models (HMMs) for recognizing input atomic actions. This approach combines the advantages of the excellent learning function of a VLMM and the fault-tolerant recognition ability of an HMM. Experiments on realistic data demonstrate the efficacy of the proposed system 
650 4 |a Journal Article 
700 1 |a Shih, Sheng-Wen  |e verfasserin  |4 aut 
700 1 |a Shih, Arthur Chun-Chieh  |e verfasserin  |4 aut 
700 1 |a Liao, Hong-Yuan Mark  |e verfasserin  |4 aut 
700 1 |a Lin, Cheng-Chung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1996  |g 39(2009), 1 vom: 07. Feb., Seite 268-80  |w (DE-627)NLM098252887  |x 1941-0492  |7 nnns 
773 1 8 |g volume:39  |g year:2009  |g number:1  |g day:07  |g month:02  |g pages:268-80 
856 4 0 |u http://dx.doi.org/10.1109/TSMCB.2008.2005643  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 39  |j 2009  |e 1  |b 07  |c 02  |h 268-80