Dendron-modified polystyrene microtiter plate : surface characterization with picoforce AFM and influence of spacing between immobilized amyloid beta proteins

A polystyrene microtiter plate was coated with a molecular layer of a cone-shaped dendron as a means of providing proper spacing between immobilized biomolecules. For the coating preparation, di(ethylene glycol) vinyl ether was grafted onto the surface of the microtiter plate by a plasma process fol...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 24 vom: 16. Dez., Seite 14296-305
1. Verfasser: Roy, Dhruvajyoti (VerfasserIn)
Weitere Verfasser: Kwak, Ju-Won, Maeng, Wan Joo, Kim, Hyungjun, Park, Joon Won
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Amyloid beta-Peptides Polystyrenes Water 059QF0KO0R DNA 9007-49-2
Beschreibung
Zusammenfassung:A polystyrene microtiter plate was coated with a molecular layer of a cone-shaped dendron as a means of providing proper spacing between immobilized biomolecules. For the coating preparation, di(ethylene glycol) vinyl ether was grafted onto the surface of the microtiter plate by a plasma process followed by self-assembly of a second-generation dendron (9-acid) or a third-generation dendron (27-acid). Contact angle analysis revealed a pronounced increase in the hydrophilicity upon plasma grafting, while the hydrophilicity reverted/decreased after dendron immobilization. For analysis by force-based atomic force microscopy (AFM), oligonucleotides were immobilized onto the AFM tip and the plate. The DNA-DNA interaction was observed at all spots examined, which implied that coating of the dendrons was uniform over the entire surface. The effectiveness for biomolecular assays of the spacing on dendron-modified microtiter plates was examined by carrying out an enzyme-linked immunosorbent assay (ELISA), where enhanced detection of different fragments of amyloid beta protein (A beta) was observed when compared with other conventional plates, such as untreated polystyrene or maleic anhydride activated plates. The positive influence of the mesospacing between biomolecules on the microtiter plates for this assay was confirmed
Beschreibung:Date Completed 01.05.2009
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la801872r