Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution

In this work we approach the analysis and segmentation of natural textured images by combining ideas from image analysis and probabilistic modeling. We rely on AM-FM texture models and specifically on the Dominant Component Analysis (DCA) paradigm for feature extraction. This method provides a low-d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 1 vom: 25. Jan., Seite 142-57
1. Verfasser: Kokkinos, Iasonas (VerfasserIn)
Weitere Verfasser: Evangelopoulos, Georgios, Maragos, Petros
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM184684749
003 DE-627
005 20231223171116.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.33  |2 doi 
028 5 2 |a pubmed24n0616.xml 
035 |a (DE-627)NLM184684749 
035 |a (NLM)19029552 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kokkinos, Iasonas  |e verfasserin  |4 aut 
245 1 0 |a Texture analysis and segmentation using modulation features, generative models, and weighted curve evolution 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2009 
500 |a Date Revised 25.11.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this work we approach the analysis and segmentation of natural textured images by combining ideas from image analysis and probabilistic modeling. We rely on AM-FM texture models and specifically on the Dominant Component Analysis (DCA) paradigm for feature extraction. This method provides a low-dimensional, dense and smooth descriptor, capturing essential aspects of texture, namely scale, orientation, and contrast. Our contributions are at three levels of the texture analysis and segmentation problems: First, at the feature extraction stage we propose a Regularized Demodulation Algorithm that provides more robust texture features and explore the merits of modifying the channel selection criterion of DCA. Second, we propose a probabilistic interpretation of DCA and Gabor filtering in general, in terms of Local Generative Models. Extending this point of view to edge detection facilitates the estimation of posterior probabilities for the edge and texture classes. Third, we propose the Weighted Curve Evolution scheme that enhances the Region Competition/ Geodesic Active Regions methods by allowing for the locally adaptive fusion of heterogeneous cues. Our segmentation results are evaluated on the Berkeley Segmentation Benchmark, and compare favorably to current state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Evangelopoulos, Georgios  |e verfasserin  |4 aut 
700 1 |a Maragos, Petros  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 1 vom: 25. Jan., Seite 142-57  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:1  |g day:25  |g month:01  |g pages:142-57 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.33  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 1  |b 25  |c 01  |h 142-57