Unsupervised learning of Probabilistic Grammar-Markov Models for object categories

We introduce a Probabilistic Grammar-Markov Model (PGMM) which couples probabilistic context free grammars and Markov Random Fields. These PGMMs are generative models defined over attributed features and are used to detect and classify objects in natural images. PGMMs are designed so that they can p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 31(2009), 1 vom: 25. Jan., Seite 114-28
1. Verfasser: Zhu, Long (VerfasserIn)
Weitere Verfasser: Chen, Yuanhao, Yuille, Alan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM184684722
003 DE-627
005 20231223171116.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2008.67  |2 doi 
028 5 2 |a pubmed24n0616.xml 
035 |a (DE-627)NLM184684722 
035 |a (NLM)19029550 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhu, Long  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised learning of Probabilistic Grammar-Markov Models for object categories 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.02.2009 
500 |a Date Revised 25.11.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce a Probabilistic Grammar-Markov Model (PGMM) which couples probabilistic context free grammars and Markov Random Fields. These PGMMs are generative models defined over attributed features and are used to detect and classify objects in natural images. PGMMs are designed so that they can perform rapid inference, parameter learning, and the more difficult task of structure induction. PGMMs can deal with unknown 2D pose (position, orientation, and scale) in both inference and learning, different appearances, or aspects, of the model. The PGMMs can be learnt in an unsupervised manner where the image can contain one of an unknown number of objects of different categories or even be pure background. We first study the weakly supervised case, where each image contains an example of the (single) object of interest, and then generalize to less supervised cases. The goal of this paper is theoretical but, to provide proof of concept, we demonstrate results from this approach on a subset of the Caltech dataset (learning on a training set and evaluating on a testing set). Our results are generally comparable with the current state of the art, and our inference is performed in less than five seconds 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Chen, Yuanhao  |e verfasserin  |4 aut 
700 1 |a Yuille, Alan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 31(2009), 1 vom: 25. Jan., Seite 114-28  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:31  |g year:2009  |g number:1  |g day:25  |g month:01  |g pages:114-28 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2008.67  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2009  |e 1  |b 25  |c 01  |h 114-28