|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM184497132 |
003 |
DE-627 |
005 |
20231223170739.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2009 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/jcc.21115
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0615.xml
|
035 |
|
|
|a (DE-627)NLM184497132
|
035 |
|
|
|a (NLM)19009604
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Qiu, Jian-Ding
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Using support vector machines for prediction of protein structural classes based on discrete wavelet transform
|
264 |
|
1 |
|c 2009
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.07.2009
|
500 |
|
|
|a Date Revised 18.11.2010
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a 2008 Wiley Periodicals, Inc.
|
520 |
|
|
|a The prediction of secondary structure is a fundamental and important component in the analytical study of protein structure and functions. How to improve the predictive accuracy of protein structural classification by effectively incorporating the sequence-order effects is an important and challenging problem. In this study, a new method, in which the support vector machine combines with discrete wavelet transform, is developed to predict the protein structural classes. Its performance is assessed by cross-validation tests. The predicted results show that the proposed approach can remarkably improve the success rates, and might become a useful tool for predicting the other attributes of proteins as well
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Proteins
|2 NLM
|
700 |
1 |
|
|a Luo, San-Hua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Jian-Hua
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liang, Ru-Ping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 30(2009), 8 vom: 20. Juni, Seite 1344-50
|w (DE-627)NLM098138448
|x 1096-987X
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2009
|g number:8
|g day:20
|g month:06
|g pages:1344-50
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/jcc.21115
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2009
|e 8
|b 20
|c 06
|h 1344-50
|