Segmentation of tracking sequences using dynamically updated adaptive learning

The problem of segmentation of tracking sequences is of central importance in a multitude of applications. In the current paper, a different approach to the problem is discussed. Specifically, the proposed segmentation algorithm is implemented in conjunction with estimation of the dynamic parameters...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 12 vom: 01. Dez., Seite 2403-12
1. Verfasser: Michailovich, Oleg (VerfasserIn)
Weitere Verfasser: Tannenbaum, Allen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM184452554
003 DE-627
005 20240312232345.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.2006455  |2 doi 
028 5 2 |a pubmed24n1324.xml 
035 |a (DE-627)NLM184452554 
035 |a (NLM)19004712 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Michailovich, Oleg  |e verfasserin  |4 aut 
245 1 0 |a Segmentation of tracking sequences using dynamically updated adaptive learning 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.01.2009 
500 |a Date Revised 12.03.2024 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The problem of segmentation of tracking sequences is of central importance in a multitude of applications. In the current paper, a different approach to the problem is discussed. Specifically, the proposed segmentation algorithm is implemented in conjunction with estimation of the dynamic parameters of moving objects represented by the tracking sequence. While the information on objects' motion allows one to transfer some valuable segmentation priors along the tracking sequence, the segmentation allows substantially reducing the complexity of motion estimation, thereby facilitating the computation. Thus, in the proposed methodology, the processes of segmentation and motion estimation work simultaneously, in a sort of "collaborative" manner. The Bayesian estimation framework is used here to perform the segmentation, while Kalman filtering is used to estimate the motion and to convey useful segmentation information along the image sequence. The proposed method is demonstrated on a number of both computed-simulated and real-life examples, and the obtained results indicate its advantages over some alternative approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tannenbaum, Allen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 12 vom: 01. Dez., Seite 2403-12  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:12  |g day:01  |g month:12  |g pages:2403-12 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.2006455  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 12  |b 01  |c 12  |h 2403-12