Improving color constancy using indoor-outdoor image classification

In this work, we investigate how illuminant estimation techniques can be improved, taking into account automatically extracted information about the content of the images. We considered indoor/outdoor classification because the images of these classes present different content and are usually taken...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 12 vom: 01. Dez., Seite 2381-92
1. Verfasser: Bianco, Simone (VerfasserIn)
Weitere Verfasser: Ciocca, Gianluigi, Cusano, Claudio, Schettini, Raimondo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM184452538
003 DE-627
005 20231223170649.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.2006661  |2 doi 
028 5 2 |a pubmed24n0615.xml 
035 |a (DE-627)NLM184452538 
035 |a (NLM)19004710 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bianco, Simone  |e verfasserin  |4 aut 
245 1 0 |a Improving color constancy using indoor-outdoor image classification 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.01.2009 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this work, we investigate how illuminant estimation techniques can be improved, taking into account automatically extracted information about the content of the images. We considered indoor/outdoor classification because the images of these classes present different content and are usually taken under different illumination conditions. We have designed different strategies for the selection and the tuning of the most appropriate algorithm (or combination of algorithms) for each class. We also considered the adoption of an uncertainty class which corresponds to the images where the indoor/outdoor classifier is not confident enough. The illuminant estimation algorithms considered here are derived from the framework recently proposed by Van de Weijer and Gevers. We present a procedure to automatically tune the algorithms' parameters. We have tested the proposed strategies on a suitable subset of the widely used Funt and Ciurea dataset. Experimental results clearly demonstrate that classification based strategies outperform general purpose algorithms 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Ciocca, Gianluigi  |e verfasserin  |4 aut 
700 1 |a Cusano, Claudio  |e verfasserin  |4 aut 
700 1 |a Schettini, Raimondo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 12 vom: 01. Dez., Seite 2381-92  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:12  |g day:01  |g month:12  |g pages:2381-92 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.2006661  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 12  |b 01  |c 12  |h 2381-92