Extensions of parallel coordinates for interactive exploration of large multi-timepoint data sets

Parallel coordinate plots (PCPs) are commonly used in information visualization to provide insight into multi-variate data. These plots help to spot correlations between variables. PCPs have been successfully applied to unstructured datasets up to a few millions of points. In this paper, we present...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 14(2008), 6 vom: 07. Nov., Seite 1436-43
1. Verfasser: Blaas, Jorik (VerfasserIn)
Weitere Verfasser: Botha, Charl P, Post, Frits H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM184328365
003 DE-627
005 20231223170422.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2008.131  |2 doi 
028 5 2 |a pubmed24n0615.xml 
035 |a (DE-627)NLM184328365 
035 |a (NLM)18988994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Blaas, Jorik  |e verfasserin  |4 aut 
245 1 0 |a Extensions of parallel coordinates for interactive exploration of large multi-timepoint data sets 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.12.2008 
500 |a Date Revised 07.11.2008 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Parallel coordinate plots (PCPs) are commonly used in information visualization to provide insight into multi-variate data. These plots help to spot correlations between variables. PCPs have been successfully applied to unstructured datasets up to a few millions of points. In this paper, we present techniques to enhance the usability of PCPs for the exploration of large, multi-timepoint volumetric data sets, containing tens of millions of points per timestep. The main difficulties that arise when applying PCPs to large numbers of data points are visual clutter and slow performance, making interactive exploration infeasible. Moreover, the spatial context of the volumetric data is usually lost. We describe techniques for preprocessing using data quantization and compression, and for fast GPU-based rendering of PCPs using joint density distributions for each pair of consecutive variables, resulting in a smooth, continuous visualization. Also, fast brushing techniques are proposed for interactive data selection in multiple linked views, including a 3D spatial volume view. These techniques have been successfully applied to three large data sets: Hurricane Isabel (Vis'04 contest), the ionization front instability data set (Vis'08 design contest), and data from a large-eddy simulation of cumulus clouds. With these data, we show how PCPs can be extended to successfully visualize and interactively explore multi-timepoint volumetric datasets with an order of magnitude more data points 
650 4 |a Journal Article 
700 1 |a Botha, Charl P  |e verfasserin  |4 aut 
700 1 |a Post, Frits H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 14(2008), 6 vom: 07. Nov., Seite 1436-43  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:14  |g year:2008  |g number:6  |g day:07  |g month:11  |g pages:1436-43 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2008.131  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2008  |e 6  |b 07  |c 11  |h 1436-43