Prediction of antibacterial compounds by machine learning approaches

2008 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 30(2009), 8 vom: 02. Juni, Seite 1202-11
1. Verfasser: Yang, Xue-Gang (VerfasserIn)
Weitere Verfasser: Chen, Duan, Wang, Min, Xue, Ying, Chen, Yu-Zong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2009
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Anti-Bacterial Agents
LEADER 01000naa a22002652 4500
001 NLM184321115
003 DE-627
005 20231223170411.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21148  |2 doi 
028 5 2 |a pubmed24n0614.xml 
035 |a (DE-627)NLM184321115 
035 |a (NLM)18988254 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Xue-Gang  |e verfasserin  |4 aut 
245 1 0 |a Prediction of antibacterial compounds by machine learning approaches 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.07.2009 
500 |a Date Revised 07.04.2009 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a 2008 Wiley Periodicals, Inc. 
520 |a The machine learning (ML) as well as quantitative structure activity relationship (QSAR) method has been explored for predicting compounds with antibacterial activities at impressive performance. It is desirable to test additional ML methods, select most representative sets of molecular descriptors, and subject the developed prediction models to rigorous evaluations. This work evaluated three ML methods, support vector classification (SVC), k-nearest neighbor (k-NN), and C4.5 decision tree, which were trained and tested by 230 antibacterial and 381 nonantibacterial compounds. A well-established feature selection method was used to select representative molecular descriptors from a larger pool than that used in reported studies. The performance of the developed prediction models was tested by 5-fold cross-validation and independent evaluation set. SVC produced the best prediction accuracies of 96.66 and 98.15% for antibacterial compounds, and 99.50 and 98.02% for nonantibacterial compounds respectively, which are slightly improved against those of the reported ML as well as QSAR models and outperform the k-NN and C4.5 decision tree models developed in this work. Our study suggests that ML methods, particularly SVC, are potentially useful for facilitating the discovery of antibacterial agents 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Anti-Bacterial Agents  |2 NLM 
700 1 |a Chen, Duan  |e verfasserin  |4 aut 
700 1 |a Wang, Min  |e verfasserin  |4 aut 
700 1 |a Xue, Ying  |e verfasserin  |4 aut 
700 1 |a Chen, Yu-Zong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 8 vom: 02. Juni, Seite 1202-11  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:8  |g day:02  |g month:06  |g pages:1202-11 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21148  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 8  |b 02  |c 06  |h 1202-11