Two-dimensional blind Bayesian deconvolution of medical ultrasound images

A new approach to 2-D blind deconvolution of ultrasonic images in a Bayesian framework is presented. The radio-frequency image data are modeled as a convolution of the point-spread function and the tissue function, with additive white noise. The deconvolution algorithm is derived from statistical as...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 55(2008), 10 vom: 15. Okt., Seite 2140-53
1. Verfasser: Jirík, Radovan (VerfasserIn)
Weitere Verfasser: Taxt, Torfinn
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:A new approach to 2-D blind deconvolution of ultrasonic images in a Bayesian framework is presented. The radio-frequency image data are modeled as a convolution of the point-spread function and the tissue function, with additive white noise. The deconvolution algorithm is derived from statistical assumptions about the tissue function, the point-spread function, and the noise. It is solved as an iterative optimization problem. In each iteration, additional constraints are applied as a projection operator to further stabilize the process. The proposed method is an extension of the homomorphic deconvolution, which is used here only to compute the initial estimate of the point-spread function. Homomorphic deconvolution is based on the assumption that the point-spread function and the tissue function lie in different bands of the cepstrum domain, which is not completely true. This limiting constraint is relaxed in the subsequent iterative deconvolution. The deconvolution is applied globally to the complete radiofrequency image data. Thus, only the global part of the point-spread function is considered. This approach, together with the need for only a few iterations, makes the deconvolution potentially useful for real-time applications. Tests on phantom and clinical images have shown that the deconvolution gives stable results of clearly higher spatial resolution and better defined tissue structures than in the input images and than the results of the homomorphic deconvolution alone
Beschreibung:Date Completed 30.01.2009
Date Revised 06.11.2008
published: Print
Citation Status MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.914