|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM184246555 |
003 |
DE-627 |
005 |
20231223170232.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la802598z
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0614.xml
|
035 |
|
|
|a (DE-627)NLM184246555
|
035 |
|
|
|a (NLM)18980354
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hu, Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a pH/potential-responsive large aggregates from the spontaneous self-assembly of a triblock copolymer in water
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.03.2009
|
500 |
|
|
|a Date Revised 01.12.2018
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A simple triblock copolymer, mPEG750-aniline pentamer-mPEG750, was prepared by condensation polymerization. The solubility of aniline pentamer in this kind of copolymer was improved in common solvents especially in aqueous solution, and the electroactivity of this copolymer was confirmed by UV-vis and CV in aqueous solution. When aniline pentamer was in its emeraldine state, the copolymer spontaneously self-assembled into large spheres (with diameters up to 1000 nm) in acidic aqueous solution (pH < 3), and into microspheres (with diameters of about 300 nm) in alkali aqueous solution, while the size of the aggregates decreased with the increase of pH. For reversible transition between the large spheres and microspheres under the change of the pH and potential, which changed the doping state and the oxidation state, respectively, the copolymer has potential applications in sensors, controlled drug release, and so forth
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Aniline Compounds
|2 NLM
|
650 |
|
7 |
|a Polymers
|2 NLM
|
650 |
|
7 |
|a methoxypolyethylene glycol-aniline pentamer-methoxypolyethylene glycol
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
700 |
1 |
|
|a Zhuang, Xiuli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Lihong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Le, Lang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Xuesi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wei, Yen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jing, Xiabin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 24(2008), 23 vom: 02. Dez., Seite 13376-82
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2008
|g number:23
|g day:02
|g month:12
|g pages:13376-82
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la802598z
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2008
|e 23
|b 02
|c 12
|h 13376-82
|