Image modeling and denoising with orientation-adapted Gaussian scale mixtures

We develop a statistical model to describe the spatially varying behavior of local neighborhoods of coefficients in a multiscale image representation. Neighborhoods are modeled as samples of a multivariate Gaussian density that are modulated and rotated according to the values of two hidden random v...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 11 vom: 15. Nov., Seite 2089-101
1. Verfasser: Hammond, David K (VerfasserIn)
Weitere Verfasser: Simoncelli, Eero P
Format: Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM184173221
003 DE-627
005 20250209214019.0
007 tu
008 231223s2008 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0614.xml 
035 |a (DE-627)NLM184173221 
035 |a (NLM)18972652 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hammond, David K  |e verfasserin  |4 aut 
245 1 0 |a Image modeling and denoising with orientation-adapted Gaussian scale mixtures 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 09.12.2008 
500 |a Date Revised 25.04.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We develop a statistical model to describe the spatially varying behavior of local neighborhoods of coefficients in a multiscale image representation. Neighborhoods are modeled as samples of a multivariate Gaussian density that are modulated and rotated according to the values of two hidden random variables, thus allowing the model to adapt to the local amplitude and orientation of the signal. A third hidden variable selects between this oriented process and a nonoriented scale mixture of Gaussians process, thus providing adaptability to the local orientedness of the signal. Based on this model, we develop an optimal Bayesian least squares estimator for denoising images and show through simulations that the resulting method exhibits significant improvement over previously published results obtained with Gaussian scale mixtures 
650 4 |a Journal Article 
700 1 |a Simoncelli, Eero P  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 11 vom: 15. Nov., Seite 2089-101  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:11  |g day:15  |g month:11  |g pages:2089-101 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 11  |b 15  |c 11  |h 2089-101