Protoporphyrin IX nanoparticle carrier : preparation, optical properties, and singlet oxygen generation

The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized dru...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 24(2008), 21 vom: 04. Nov., Seite 12534-8
Auteur principal: Rossi, Liane M (Auteur)
Autres auteurs: Silva, Paulo R, Vono, Lucas L R, Fernandes, Adjaci U, Tada, Dayane B, Baptista, Maurício S
Format: Article en ligne
Langue:English
Publié: 2008
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, Non-U.S. Gov't Drug Carriers Protoporphyrins Singlet Oxygen 17778-80-2 protoporphyrin IX C2K325S808
Description
Résumé:The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 micros, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization
Description:Date Completed 01.12.2008
Date Revised 24.11.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la800840k