Accurate prediction of thermodynamic properties of alkyl peroxides by combining density functional theory calculation with least-square calibration
2008 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 30(2009), 7 vom: 30. Mai, Seite 1007-15 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2009
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Peroxides |
Zusammenfassung: | 2008 Wiley Periodicals, Inc. Owing to the significance in kinetic modeling of the oxidation and combustion mechanisms of hydrocarbons, a fast and relatively accurate method was developed for the prediction of Delta(f)H(298)(o) of alkyl peroxides. By this method, a raw Delta(f)H(298)(o) value was calculated from the optimized geometry and vibration frequencies at B3LYP/6-31G(d,p) level and then an accurate Delta(f)H(298)(o) value was obtained by a least-square procedure. The least-square procedure is a six-parameter linear equation and is validated by a leave-one out technique, giving a cross-validation squared correlation coefficient q(2) of 0.97 and a squared correlation coefficient of 0.98 for the final model. Calculated results demonstrated that the least-square calibration leads to a remarkable reduction of error and to the accurate Delta(f)H(298)(o) values within the chemical accuracy of 8 kJ mol(-1) except (CH(3))(2)CHCH(2)CH(2)CH(2)OOH which has an error of 8.69 kJ mol(-1). Comparison of the results by CBS-Q, CBS-QB3, G2, and G3 revealed that B3LYP/6-31G(d,p) in combination with a least-square calibration is reliable in the accurate prediction of the standard enthalpies of formation for alkyl peroxides. Standard entropies at 298 K and heat capacities in the temperature range of 300-1500 K for alkyl peroxides were also calculated using the rigid rotor-harmonic oscillator approximation |
---|---|
Beschreibung: | Date Completed 24.06.2009 Date Revised 02.04.2009 published: Print Citation Status MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.21122 |