Surface-imprinted nanostructured layer-by-layer film for molecular recognition of theophylline derivatives

In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus provid...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 20 vom: 21. Okt., Seite 11988-94
1. Verfasser: Niu, Jia (VerfasserIn)
Weitere Verfasser: Liu, Zhihua, Fu, Long, Shi, Feng, Ma, Hongwei, Ozaki, Yukihiro, Zhang, Xi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Cross-Linking Reagents Disulfides Polymers Caffeine 3G6A5W338E carbopol 940 4Q93RCW27E mehr... Theophylline C137DTR5RG
Beschreibung
Zusammenfassung:In this article we report the introduction of the cooperativity of various specific interactions combined with photo-cross-linking of the interlayers to yield binding sites that can realize better selectivity and imprinting efficiency of a surface molecularly imprinted LbL film (SMILbL), thus providing a new approach toward fabrication of nanostructured molecularly imprinted thin films. It involves preassembly of poly(acrylic acid) (PAA) conjugated of the theophylline residue template via a disulfide bridge, denoted as PAAtheo 15, in solution, and layer-by-layer (LbL) assembly of PAAtheo 15 and a positively charged photoreactive diazo resin (DAR) to form multilayer thin film with designed architecture. After photo-cross-linking of the film and template removal, binding sites specific to 7-(beta-hydroxyethyl)theophylline (Theo-ol) molecules are introduced within the film. Binding assay demonstrates that the SMILbL has a high selectivity of SMILbL to Theo-ol over caffeine. A control experiment demonstrates that the selectivity of SMILbL derives from nanostructured recognition sites among the layers. The imprinting amount per unit mass of the film can be 1 order of magnitude larger than that of the conventional bulk molecular imprinting systems. As this concept of construction SMILbL can be easily extended to the other molecules by the following similar protocol: its applications in building many other different molecular recognition systems are greatly anticipated
Beschreibung:Date Completed 13.11.2008
Date Revised 24.11.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la802165f