Adaptive pseudo dilation for gestalt edge grouping and contour detection

We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 10 vom: 01. Okt., Seite 1950-62
1. Verfasser: Papari, Giuseppe (VerfasserIn)
Weitere Verfasser: Petkov, Nicolai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM182354288
003 DE-627
005 20231223162738.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.2002306  |2 doi 
028 5 2 |a pubmed24n0608.xml 
035 |a (DE-627)NLM182354288 
035 |a (NLM)18784041 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Papari, Giuseppe  |e verfasserin  |4 aut 
245 1 0 |a Adaptive pseudo dilation for gestalt edge grouping and contour detection 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2008 
500 |a Date Revised 11.09.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We consider the problem of detecting object contours in natural images. In many cases, local luminance changes turn out to be stronger in textured areas than on object contours. Therefore, local edge features, which only look at a small neighborhood of each pixel, cannot be reliable indicators of the presence of a contour, and some global analysis is needed. We introduce a new morphological operator, called adaptive pseudo-dilation (APD), which uses context dependent structuring elements in order to identify long curvilinear structure in the edge map. We show that grouping edge pixels as the connected components of the output of APD results in a good agreement with the gestalt law of good continuation. The novelty of this operator is that dilation is limited to the Voronoi cell of each edge pixel. An efficient implementation of APD is presented. The grouping algorithm is then embedded in a multithreshold contour detector. At each threshold level, small groups of edges are removed, and contours are completed by means of a generalized reconstruction from markers. The use of different thresholds makes the algorithm much less sensitive to the values of the input parameters. Both qualitative and quantitative comparison with existing approaches prove the superiority of the proposed contour detector in terms of larger amount of suppressed texture and more effective detection of low-contrast contours 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Petkov, Nicolai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 10 vom: 01. Okt., Seite 1950-62  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:10  |g day:01  |g month:10  |g pages:1950-62 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.2002306  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 10  |b 01  |c 10  |h 1950-62