Bottom-contact poly(3,3'''-didodecylquaterthiophene) thin-film transistors with gold source-drain electrodes modified by alkanethiol monolayers

A series of alkanethiol monolayers (CH 3(CH 2) n-1 SH, n = 4, 6, 8, 10, 12, 14, 16) were used to modify gold source-drain electrode surfaces for bottom-contact poly(3,3'''-didodecylquaterthiophene) (PQT-12) thin-film transistors (TFTs). The device mobilities of TFTs were significantly...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 24(2008), 20 vom: 21. Okt., Seite 11889-94
1. Verfasser: Cai, Qin Jia (VerfasserIn)
Weitere Verfasser: Chan-Park, Mary B, Lu, Zhi Song, Li, Chang Ming, Ong, Beng S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Organic Chemicals Sulfhydryl Compounds Gold 7440-57-5
Beschreibung
Zusammenfassung:A series of alkanethiol monolayers (CH 3(CH 2) n-1 SH, n = 4, 6, 8, 10, 12, 14, 16) were used to modify gold source-drain electrode surfaces for bottom-contact poly(3,3'''-didodecylquaterthiophene) (PQT-12) thin-film transistors (TFTs). The device mobilities of TFTs were significantly increased from approximately 0.015 cm (2) V (-1) s (-1) for bare electrode TFTs to a maximum of approximately 0.1 cm (2) V (-1) s (-1) for the n = 8 monolayer devices. The mobilities of devices with alkanethiol-modified Au electrodes varied parabolically with alkyl length with values of 0.06, 0.1, and 0.04 cm (2) V (-1) s (-1) at n = 4, 8, and 16, respectively. Atomic force microscopy investigations reveal that alkanethiol electrode surface modifications promote polycrystalline PQT-12 morphologies at electrode/PQT-12 contacts, which probably increase the density of states of the PQT-12 semiconductor at the interfaces. The contact resistance of TFTs is strongly modulated by the surface modification and strongly varies with the alkanethiol chain length. The surface modifications of electrodes appear to significantly improve the charge injection, with consequent substantial improvement in device performance
Beschreibung:Date Completed 13.11.2008
Date Revised 19.11.2009
published: Print-Electronic
Citation Status MEDLINE
ISSN:0743-7463
DOI:10.1021/la8009942