Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor
(c) IWA Publishing 2008.
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 58(2008), 3 vom: 20., Seite 495-501 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2008
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Membranes, Artificial Trichloroethanes Trichloroethylene 290YE8AR51 Chloroform 7V31YC746X Hydrogen 7YNJ3PO35Z |
Zusammenfassung: | (c) IWA Publishing 2008. The contamination of water by chlorinated solvents is recognized as a serious and widespread problem throughout the industrialized world. Here, we focus on three chlorinated solvents that are among those most commonly detected and that have distinct chemical features: trichloroethene (TCE), trichloroethane (TCA), and chloroform (CF). Because many contaminated waters contain mixtures of the chlorinated solvents, a treatment technology that detoxifies all of them simultaneously is highly desirable. The membrane biofilm reactor (MBfR) is a recent technological advance that makes it possible to deliver H(2) gas to bacteria efficiently and safely, despite hydrogen's low water solubility and risk of forming a combustible atmosphere when mixed with air. The objectives of this work are to document whether or not the three chlorinated compounds can be dechlorinated simultaneously in a H(2)-based MBfR and to determine if competitive or inhibitory interactions affect bio-reduction of any of the solvents. The main finding is a demonstration that directly using H(2) as the electron donor makes it possible to bio-reduce combinations of different chlorinated solvents. This finding supports that the H(2)-based MBfR can treat multiple chlorinated solvents in one step, addressing a common groundwater situation. We saw possible evidence of inhibition by CF at a concentration greater than about 1 muM, competition for H(2) from sulfate and nitrate reductions, and possible inhibition of TCE reduction from the accumulation of chloroethane (CA) or chloromethane (CM) |
---|---|
Beschreibung: | Date Completed 26.01.2009 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |
DOI: | 10.2166/wst.2008.432 |