Strategies to model the near-solute solvent molecular density/polarization

2008 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 30(2009), 5 vom: 15. Apr., Seite 700-9
Auteur principal: Yang, Pei-Kun (Auteur)
Autres auteurs: Lim, Carmay
Format: Article en ligne
Langue:English
Publié: 2009
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article Research Support, Non-U.S. Gov't Solutions Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM181665662
003 DE-627
005 20250209164415.0
007 cr uuu---uuuuu
008 231223s2009 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.21089  |2 doi 
028 5 2 |a pubmed25n0606.xml 
035 |a (DE-627)NLM181665662 
035 |a (NLM)18711719 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Pei-Kun  |e verfasserin  |4 aut 
245 1 0 |a Strategies to model the near-solute solvent molecular density/polarization 
264 1 |c 2009 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 24.04.2009 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a 2008 Wiley Periodicals, Inc. 
520 |a The solvent molecular distribution significantly affects the behavior of the solute molecules and is thus important in studying many biological phenomena. It can be described by the solvent molecular density distribution, g, and the solvent electric dipole distribution, p. The g and p can be computed directly by counting the number of solvent molecules/dipoles in a microscopic volume centered at r during a simulation or indirectly from the mean force F and electrostatic field E acting on the solvent molecule at r, respectively. However, it is not clear how the g and p derived from simulations depend on the solvent molecular center or the solute charge and if the g(F) and p(E) computed from the mean force and electric field acting on the solvent molecule, respectively, could reproduce the corresponding g and p obtained by direct counting. Hence, we have computed g, p, g(F), and p(E) using different water centers from simulations of a solute atom of varying charge solvated in TIP3P water. The results show that g(F) and p(E) can reproduce the g and p obtained using a given count center. This implies that rather than solving the coordinates of each water molecule by MD simulations, the distribution of water molecules could be indirectly obtained from analytical formulas for the mean force F and electrostatic field E acting on the solvent molecule at r. Furthermore, the dependence of the g and p distributions on the solute charge revealed provides an estimate of the change in g and p surrounding a biomolecule upon a change in its conformation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Solutions  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Lim, Carmay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 30(2009), 5 vom: 15. Apr., Seite 700-9  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:30  |g year:2009  |g number:5  |g day:15  |g month:04  |g pages:700-9 
856 4 0 |u http://dx.doi.org/10.1002/jcc.21089  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2009  |e 5  |b 15  |c 04  |h 700-9