Concurrent computation of attribute filters on shared memory parallel machines

Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 30(2008), 10 vom: 01. Okt., Seite 1800-13
1. Verfasser: Wilkinson, Michael H F (VerfasserIn)
Weitere Verfasser: Gao, Hui, Hesselink, Wim H, Jonker, Jan-Eppo, Meijster, Arnold
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM181592738
003 DE-627
005 20231223161521.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2007.70836  |2 doi 
028 5 2 |a pubmed24n0605.xml 
035 |a (DE-627)NLM181592738 
035 |a (NLM)18703832 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wilkinson, Michael H F  |e verfasserin  |4 aut 
245 1 0 |a Concurrent computation of attribute filters on shared memory parallel machines 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.10.2008 
500 |a Date Revised 15.08.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Morphological attribute filters have not previously been parallelized, mainly because they are both global and non-separable. We propose a parallel algorithm that achieves efficient parallelism for a large class of attribute filters, including attribute openings, closings, thinnings and thickenings, based on Salembier's Max-Trees and Min-trees. The image or volume is first partitioned in multiple slices. We then compute the Max-trees of each slice using any sequential Max-Tree algorithm. Subsequently, the Max-trees of the slices can be merged to obtain the Max-tree of the image. A C-implementation yielded good speed-ups on both a 16-processor MIPS 14000 parallel machine, and a dual-core Opteron-based machine. It is shown that the speed-up of the parallel algorithm is a direct measure of the gain with respect to the sequential algorithm used. Furthermore, the concurrent algorithm shows a speed gain of up to 72 percent on a single-core processor, due to reduced cache thrashing 
650 4 |a Journal Article 
700 1 |a Gao, Hui  |e verfasserin  |4 aut 
700 1 |a Hesselink, Wim H  |e verfasserin  |4 aut 
700 1 |a Jonker, Jan-Eppo  |e verfasserin  |4 aut 
700 1 |a Meijster, Arnold  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 30(2008), 10 vom: 01. Okt., Seite 1800-13  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:30  |g year:2008  |g number:10  |g day:01  |g month:10  |g pages:1800-13 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2007.70836  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2008  |e 10  |b 01  |c 10  |h 1800-13