|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM181592665 |
003 |
DE-627 |
005 |
20231223161521.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2008.168
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0605.xml
|
035 |
|
|
|a (DE-627)NLM181592665
|
035 |
|
|
|a (NLM)18703825
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Levin, Anat
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Spectral matting
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.10.2008
|
500 |
|
|
|a Date Revised 15.08.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We present spectral matting: a new approach to natural image matting that automatically computes a basis set of fuzzy matting components from the smallest eigenvectors of a suitably defined Laplacian matrix. Thus, our approach extends spectral segmentation techniques, whose goal is to extract hard segments, to the extraction of soft matting components. These components may then be used as building blocks to easily construct semantically meaningful foreground mattes, either in an unsupervised fashion, or based on a small amount of user input
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Rav-Acha, Alex
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lischinski, Dani
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 30(2008), 10 vom: 01. Okt., Seite 1699-712
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:30
|g year:2008
|g number:10
|g day:01
|g month:10
|g pages:1699-712
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2008.168
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 30
|j 2008
|e 10
|b 01
|c 10
|h 1699-712
|