Application of artificial intelligence models in water quality forecasting

The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Environmental technology. - 1993. - 29(2008), 6 vom: 21. Juni, Seite 625-31
1. Verfasser: Yeon, I S (VerfasserIn)
Weitere Verfasser: Kim, J H, Jun, K W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Environmental technology
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Carbon 7440-44-0 Oxygen S88TT14065
LEADER 01000caa a22002652c 4500
001 NLM181577836
003 DE-627
005 20250209163055.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1080/09593330801984456  |2 doi 
028 5 2 |a pubmed25n0605.xml 
035 |a (DE-627)NLM181577836 
035 |a (NLM)18702288 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yeon, I S  |e verfasserin  |4 aut 
245 1 0 |a Application of artificial intelligence models in water quality forecasting 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.09.2008 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The real-time data of the continuous water quality monitoring station at the Pyeongchang river was analyzed separately during the rainy period and non-rainy period. Total organic carbon data observed during the rainy period showed a greater mean value, maximum value and standard deviation than the data observed during the non-rainy period. Dissolved oxygen values during the rainy period were lower than those observed during the non-rainy period. It was analyzed that the discharge due to rain fall from the basin affects the change of the water quality. A model for the forecasting of water quality was constructed and applied using the neural network model and the adaptive neuro-fuzzy inference system. Regarding the models of levenberg-marquardt neural network, modular neural network and adaptive neuro-fuzzy inference system, all three models showed good results for the simulation of total organic carbon. The levenberg-marquardt neural network and modular neural network models showed better results than the adaptive neuro-fuzzy inference system model in the forecasting of dissolved oxygen. The modular neural network model, which was applied with the qualitative data of time in addition to quantitative data, showed the least error 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Carbon  |2 NLM 
650 7 |a 7440-44-0  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
700 1 |a Kim, J H  |e verfasserin  |4 aut 
700 1 |a Jun, K W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Environmental technology  |d 1993  |g 29(2008), 6 vom: 21. Juni, Seite 625-31  |w (DE-627)NLM098202545  |x 1479-487X  |7 nnas 
773 1 8 |g volume:29  |g year:2008  |g number:6  |g day:21  |g month:06  |g pages:625-31 
856 4 0 |u http://dx.doi.org/10.1080/09593330801984456  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2008  |e 6  |b 21  |c 06  |h 625-31