Remediation of chlorophenol- and phenol-contaminated groundwater by a sequencing batch biofilm reactor

IWA Publishing 2008.

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 58(2008), 2 vom: 07., Seite 295-301
1. Verfasser: Farabegoli, G (VerfasserIn)
Weitere Verfasser: Chiavola, A, Rolle, E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Journal Article Chlorophenols Phenols Water Pollutants, Chemical Water 059QF0KO0R
Beschreibung
Zusammenfassung:IWA Publishing 2008.
The paper describes the results of an investigation aimed at evaluating suitability of a lab-scale Sequencing Batch Biofilm Reactor (SBBR) for the remediation of groundwater contaminated by phenol (P) and 2-chlorophenol (2-CP). Kinetics of compound degradation was determined along the bed height in the absence and in presence of effluent recirculation, and with different influent composition (compounds fed separately or in combination in the same stream). SBBR performances with and without recirculation were very satisfactory for all the influent compositions: the system showed 99% removal efficiencies for both phenol and 2-CP and their complete removal was always achieved far before the end of react. In the presence of recirculation, the concentration gradient established during fill was rapidly eliminated and an even biomass distribution along the bed height was formed. Consequently, an acceleration of the elimination process was observed, particularly for phenol that was mostly removed in the first hour of the cycle. When the compounds were fed simultaneously, 2-CP removal kinetics improved probably due to cometabolism. The adsorption phenomena of the toxic compounds on the packing material were studied also, showing about 50% COD removal after 7 hours contact time
Beschreibung:Date Completed 05.01.2009
Date Revised 20.11.2014
published: Print
Citation Status MEDLINE
ISSN:0273-1223
DOI:10.2166/wst.2008.398