Image denoising using derotated complex wavelet coefficients

A method for removing additive Gaussian noise from digital images is described. It is based on statistical modeling of the coefficients of a redundant, oriented, complex multiscale transform. Two types of modeling are used to model the wavelet coefficients. Both are based on Gaussian scale mixture (...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 9 vom: 01. Sept., Seite 1500-11
1. Verfasser: Miller, Mark (VerfasserIn)
Weitere Verfasser: Kingsbury, Nick
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM181569396
003 DE-627
005 20231223161457.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.926146  |2 doi 
028 5 2 |a pubmed24n0605.xml 
035 |a (DE-627)NLM181569396 
035 |a (NLM)18701390 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Miller, Mark  |e verfasserin  |4 aut 
245 1 0 |a Image denoising using derotated complex wavelet coefficients 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2008 
500 |a Date Revised 14.08.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A method for removing additive Gaussian noise from digital images is described. It is based on statistical modeling of the coefficients of a redundant, oriented, complex multiscale transform. Two types of modeling are used to model the wavelet coefficients. Both are based on Gaussian scale mixture (GSM) modeling of neighborhoods of coefficients at adjacent locations and scales. Modeling of edge and ridge discontinuities is performed using wavelet coefficients derotated by twice the phase of the coefficient at the same location and the next coarser scale. Other areas are modeled using standard wavelet coefficients. An adaptive Bayesian model selection framework is used to determine the modeling applied to each neighborhood. The proposed algorithm succeeds in providing improved denoising performance at structural image features, reducing ringing artifacts and enhancing sharpness, while avoiding degradation in other areas. The method outperforms previously published methods visually and in standard tests 
650 4 |a Journal Article 
700 1 |a Kingsbury, Nick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 9 vom: 01. Sept., Seite 1500-11  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:17  |g year:2008  |g number:9  |g day:01  |g month:09  |g pages:1500-11 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.926146  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 9  |b 01  |c 09  |h 1500-11