Image modeling using interscale phase properties of complex wavelet coefficients

This paper describes an approach to image modelling using interscale phase relationships of wavelet coefficients for use in image estimation applications. The method is based on the dual tree complex wavelet transform, but a phase rotation is applied to the coefficients to create complex "derot...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 17(2008), 9 vom: 01. Sept., Seite 1491-9
1. Verfasser: Miller, Mark (VerfasserIn)
Weitere Verfasser: Kingsbury, Nick
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM181569388
003 DE-627
005 20250209162931.0
007 cr uuu---uuuuu
008 231223s2008 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2008.926147  |2 doi 
028 5 2 |a pubmed25n0605.xml 
035 |a (DE-627)NLM181569388 
035 |a (NLM)18701389 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Miller, Mark  |e verfasserin  |4 aut 
245 1 0 |a Image modeling using interscale phase properties of complex wavelet coefficients 
264 1 |c 2008 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.09.2008 
500 |a Date Revised 14.08.2008 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper describes an approach to image modelling using interscale phase relationships of wavelet coefficients for use in image estimation applications. The method is based on the dual tree complex wavelet transform, but a phase rotation is applied to the coefficients to create complex "derotated" coefficients. These derotated coefficients are shown to have increased correlation compared to standard wavelet coefficients near edge and ridge features allowing improved signal estimation in these areas. The nature of the benefits brought by the derotated coefficients are analyzed and the implications for image estimation algorithm design noted. The observations and conclusions provide a basis for design of the denoising algorithm in [1] 
650 4 |a Journal Article 
700 1 |a Kingsbury, Nick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 17(2008), 9 vom: 01. Sept., Seite 1491-9  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:17  |g year:2008  |g number:9  |g day:01  |g month:09  |g pages:1491-9 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2008.926147  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 17  |j 2008  |e 9  |b 01  |c 09  |h 1491-9