Reactive epoxy-functionalized thin films by a pulsed plasma polymerization process

A novel plasma functionalization process based on the pulsed plasma polymerization of allyl glycidyl ether is reported for the generation of robust and highly reactive epoxy-functionalized surfaces with well-defined chemical properties. Using a multitechnique approach including X-ray photoelectron s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 18 vom: 16. Sept., Seite 10187-95
1. Verfasser: Thierry, Benjamin (VerfasserIn)
Weitere Verfasser: Jasieniak, Marek, de Smet, Louis C P M, Vasilev, Krasimir, Griesser, Hans J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Biocompatible Materials Epoxy Resins Ethanolamines Polymers Ethanolamine 5KV86114PT Muramidase EC 3.2.1.17 mehr... Oxygen S88TT14065
Beschreibung
Zusammenfassung:A novel plasma functionalization process based on the pulsed plasma polymerization of allyl glycidyl ether is reported for the generation of robust and highly reactive epoxy-functionalized surfaces with well-defined chemical properties. Using a multitechnique approach including X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), infrared spectroscopy (FT-IR), atomic force microscopy (AFM) and ellipsometry, the effect of the plasma deposition parameters on the creation and retention of epoxy surface functionalities was characterized systematically. Under optimal plasma polymerization conditions (duty cycle: 1 ms/20 ms and 1 ms/200 ms), reactive uniform films with a high level of reproducibility were prepared and successfully used to covalently immobilize the model protein lysozyme. Surface derivatization was also carried out with ethanolamine to probe for epoxy groups. The ethanolamine blocked surface resisted nonspecific adsorption of lysozyme. Lysozyme immobilization was also done via microcontact printing. These results show that allyl glycidyl ether plasma polymer layers are an attractive strategy to produce a reactive epoxy functionalized surface on a wide range of substrate materials for biochip and other biotechnology applications
Beschreibung:Date Completed 17.10.2008
Date Revised 21.11.2013
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la801140u