|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM181257084 |
003 |
DE-627 |
005 |
20231223160928.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2008 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la8012798
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0604.xml
|
035 |
|
|
|a (DE-627)NLM181257084
|
035 |
|
|
|a (NLM)18666758
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yoshimoto, Keitaro
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Facile construction of sulfanyl-terminated poly(ethylene glycol)-brushed layer on a gold surface for protein immobilization by the combined use of sulfanyl-ended telechelic and semitelechelic poly(ethylene glycol)s
|
264 |
|
1 |
|c 2008
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 13.11.2008
|
500 |
|
|
|a Date Revised 01.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A sulfanyl-terminated poly(ethylene glycol) (PEG)-brushed layer was constructed on a gold sensor platform by consecutive treatment with a sulfanyl-ended semitelechelic PEG (2 kDa, hereafter "MeO-PEG-SH (2k)") and a sulfanyl-ended telechelic PEG (5 kDa, hereafter "SH-PEG-SH (5k)"). Our strategy of constructing the sulfanyl-terminated PEG-brushed gold surface is based on mixed-PEG-brush formation from the longer SH-PEG-SH (5k) and the shorter MeO-PEG-SH (2k), where the preimmobilized shorter MeO-PEG-SH (2k) prevents loop formation in the longer SH-PEG-SH (5k) on the surface and the free sulfanyl group at one end of the longer SH-PEG-SH is exposed to the mixed-PEG tethered-chain surface. From the experimental results obtained from surface plasmon resonance analysis, it became apparent that the immobilization density and the orientation of the longer SH-PEG-SH (5k) on the gold surface could be controlled by the amount of preimmobilized shorter MeO-PEG-SH (2k). Under the optimized conditions of MeO-PEG-SH (2k) premodification, the constructed MeO-PEG-SH (2k)/SH-PEG-SH (5k) mixed layer conjugated efficiently with the maleimide-installed proteins and the antibody Fab' fragments, accompanied by an appreciable nonfouling characteristic against bovine serum albumin as strong as that of the MeO-PEG-SH (5k)/MeO-PEG-SH (2k) mixed surface, which was reported in our previous work; it also showed a superior nonfouling characteristic compared to the commercially available carboxymethylated dextran surface (Uchida, K.; et al. Biointerphase 2007, 2 (4), 126-130). Furthermore, from the experimental results of the X-ray photoelectron spectrometry analysis, the presence of both Au-bound and Au-unbound sulfur species was confirmed on the SH-PEG-SH (5k)/MeO-PEG-SH (2k)-modified gold surface. These results clearly indicate that the preimmobilized shorter MeO-PEG-SH (2k) not only increased the nonfouling characteristic of the PEG tethered-chain surface but also prevented loop formation in the longer SH-PEG-SH (5k) on the gold surface. Since the protein-installed SH-PEG-SH (5k)/MeO-PEG-SH (2k)-modified surface showed a strongly nonfouling characteristic and recognized the target molecules selectively, this new mixed-brush-formation technique using longer sulfanyl-ended telechelic PEGs and shorter semitelechelic PEGs is a simple yet effective method of constructing a strongly nonfouling terminal-functionalized gold surface for protein immobilization
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Maleimides
|2 NLM
|
650 |
|
7 |
|a Proteins
|2 NLM
|
650 |
|
7 |
|a maleimide
|2 NLM
|
650 |
|
7 |
|a 2519R1UGP8
|2 NLM
|
650 |
|
7 |
|a Serum Albumin, Bovine
|2 NLM
|
650 |
|
7 |
|a 27432CM55Q
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
650 |
|
7 |
|a Gold
|2 NLM
|
650 |
|
7 |
|a 7440-57-5
|2 NLM
|
700 |
1 |
|
|a Hirase, Takumi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nemoto, Seiko
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hatta, Tamao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Nagasaki, Yukio
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 24(2008), 17 vom: 02. Sept., Seite 9623-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:24
|g year:2008
|g number:17
|g day:02
|g month:09
|g pages:9623-9
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la8012798
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2008
|e 17
|b 02
|c 09
|h 9623-9
|