Immobilization of lipases on hydrophobilized zirconia nanoparticles : highly enantioselective and reusable biocatalysts

Our study has demonstrated for the first time that zirconia nanoparticles modified by a simple carboxylic surfactant of a very long alkyl chain can significantly enhance the activity of the immobilized lipases for asymmetric synthesis in organic media. Zirconia nanoparticles of ca. 20 nm diameter we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 24(2008), 16 vom: 19. Aug., Seite 8877-84
1. Verfasser: Chen, Yi Zhao (VerfasserIn)
Weitere Verfasser: Yang, Cai Ting, Ching, Chi Bun, Xu, Rong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2008
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Enzymes, Immobilized Surface-Active Agents Zirconium C6V6S92N3C Lipase EC 3.1.1.3 zirconium oxide S38N85C5G0
Beschreibung
Zusammenfassung:Our study has demonstrated for the first time that zirconia nanoparticles modified by a simple carboxylic surfactant of a very long alkyl chain can significantly enhance the activity of the immobilized lipases for asymmetric synthesis in organic media. Zirconia nanoparticles of ca. 20 nm diameter were grafted with carboxylic surfactant modifiers from Tween 85 and erucic acid. The surface of nanoparticles was successfully changed from hydrophilic to hydrophobic. Lipases from Candida rugosa and Pseudomonas cepacia were immobilized on the modified zirconia nanoparticles by adsorption in aqueous solution. The immobilized lipases were used for the resolution of ( R, S)-ibuprofen and ( R, S)-1-phenylethanol through esterification and acylation, respectively, in isooctane organic solvent. When immobilized on erucic acid-modified zirconia, both lipases gave significantly higher activity and enantioselectivity compared with those from their corresponding crude lipase powders. The nanohybrid biocatalysts are stable and can be reused for eight cycles without loss in activity and selectivity. The interaction between the hydrophobic surface of zirconia support and lipases probably induces the conformational rearrangement of lipases into an active, stable form
Beschreibung:Date Completed 17.09.2008
Date Revised 24.11.2016
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/la801384c